Products, Vendors, CAD Files, Spec Sheets and More...
Sign up for LAWeekly newsletter
In the future, natural gas derived from chunks of ice that workers collect from beneath the ocean floor and beneath the arctic permafrost may fuel cars, heat homes, and power factories. Government researchers are reporting that these so-called “gas hydrates,” a frozen form of natural gas that bursts into flames at the touch of a match, show increasing promise as an abundant, untapped source of clean, sustainable energy.
The icy chunks could supplement traditional energy sources that are in short supply and which produce large amounts of carbon dioxide linked to global warming, the scientists say. Last November, a team of USGS researchers that included Collett announced a giant step toward that bridge to the future. In a landmark study, the USGS scientists estimated that 85.4 trillion cubic feet of natural gas could potentially be extracted from gas hydrates in Alaska’s North Slope region, enough to heat more than 100 million average homes for more than a decade.
“It’s definitely a vast storehouse of energy,” Collett says. “But it is still unknown how much of this volume can actually be produced on an industrial scale.” That volume, he says, depends on the ability of scientists to extract useful methane, the main ingredient in natural gas, from gas hydrate formations in an efficient and cost-effective manner. Scientists worldwide are now doing research on gas hydrates in order to understand how this strange material forms and how it might be used to supplement coal, oil, and traditional natural gas.
Although scientists have known about gas hydrates for decades, they’ve only recently begun to try to use them as an alternative energy source. Gas hydrates, also known as “clathrates,” form when methane gas from the decomposition of organic material comes into contact with water at low temperatures and high pressures. Those cold, high-pressure conditions exist deep below the oceans and underground on land in certain parts of the world, including the ocean floor and permafrost areas of the Arctic.
Raleigh, North Carolina
Francisco Uviña, University of New Mexico
Hardscape Oasis in Litchfield Park
Ash Nochian, Ph.D. Landscape Architect
Sign up to receive Landscape Architect and Specifier News Magazine, LA Weekly and More...
Invalid Verification Code
Please enter the Verification Code below
You are now subcribed to LASN. You can also search and download CAD files and spec sheets from LADetails.